Abstract
Limestone-calcined clay-cement (LC3) is a novel ternary cementitious material. Cenospheres (CS) are a type of fly ash with a smooth surface and hollow center. The chemical etching of the CS creates perforated CS (PCS) with pores through with water can be transported to achieve internal curing of LC3. In this study, experiments were performed to determine the effect of PCS on the performance of LC3 high-performance concrete. The dosage of PCS was 4% and 8%, and the dosage of CS was 8%. The autogenous shrinkage of samples with 4% and 8% PCS was reduced by 31.1% and 61.8%, respectively. This means PCS reduces the autogenous shrinkage of LC3. The strength of the sample with 4% PCS increased by 7.01 and 12.06 MPa compared with the control sample at 7 and 28 days of age, respectively, due to the internal curing of PCS and its volcanic ash This achieves the dual impact of low shrinkage and high strength. Furthermore, the experimental X-ray diffraction and Fourier transform infrared spectroscopy results showed that PCS can undergo pozzolanic reactions with calcium hydroxide. In addition, the heat of hydration and thermogravimetric analysis experiments showed that the internal curing of PCS promotes the hydration of LC3. Scanning electron microscopy images showed that the sample with 8% PCS had a high-quality dense bond between the PCS and matrix. Therefore, PCS can be used as a reactive internal curing material and the microscopic reaction of PCS can improve the macroscopic properties of concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.