Abstract

Tree growth information is crucial in forest management and planning. Terrain-derived attributes such as the topographic wetness index (TWI), in addition to leaf area index (LAI) are closely related to tree growth, but are not commonly used in empirical growth models. In this study, we examined if modified TWI and LAI estimated from airborne light detection and ranging (LiDAR) data could be used to improve the predictions of a national single-tree diameter growth model. Altogether 1118 sample trees were selected within 197 subjectively placed plots in randomly selected forest stands in south-eastern Finland. Linear mixed effect (LME) and multilayer perceptron models were used to model the bias of 5-year growth predictions of the model and thus ultimately improve its predictions. The root mean square error (RMSE) of the national model was 0.604 cm. LME modelling reduced this value to 0.404 cm and MLP to 0.568 cm. The predictors included in the best-performing LME model were modified TWI, LAI estimated from LiDAR intensities, and elevation. Without an LAI estimate, the best RMSE was 0.436 cm. When applied as such, original and modified TWIs produced similar accuracy. We conclude that both TWI and LAI obtained from LiDAR data improve the diameter growth predictions of the national model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.