Abstract

Biodegradation is recognized as the main pathway for acetochlor attenuation in aquatic environments. However, the potential abiotic degradation of acetochlor by hydroxyl radicals (•OH) generated during oxygenation of hyporheic zone sediments has not been investigated. This study aims to examine the production of •OH during oxygenation of hyporheic zone sediments and its effects on acetochlor attenuation. A significant decrease of acetochlor, ranging from 77.9% to 100%, was observed in the water-sediment systems with extensive •OH production. The primary sources of •OH production were found to be the oxidation of Fe(II) and reduced humic acids. Furthermore, a •OH quenching experiment suggests that •OH driven oxidation is the dominant pathway for acetochlor attenuation. Carbon isotope fractionation of acetochlor degradation during oxygenation of sediments (εbulk,C ranged from −1.5‰ to −0.5 ± 0.3‰) was close to that during acetochlor degradation by •OH in a H2O2–Fe3O4 Fenton system (εbulk,C = −0.5 ± 0.1‰), but significantly smaller than that during acetochlor biodegradation (εbulk,C = −5.8 ± 0.9‰). Compound-specific isotope analysis (CSIA) further suggests that •OH produced by sediment oxygenation plays a critical role in acetochlor attenuation in aquatic environments. Results of calculated apparent kinetic isotope effect of carbon (AKIEC) and transformation products indicate that SN1 and SN2-type nucleophilic substitution are the first steps in acetochlor attenuation through •OH driven oxidation (AKIEC = 1.007 ± 0.001) and aerobic biodegradation (AKIEC = 1.088 ± 0.013), respectively. Our findings highlight the potential of CSIA to assess the acetochlor degradation in water-sediment system, which can help to elucidate the fate of herbicide in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call