Abstract

Microplastics (MPs), an emerging pollutant of global concern, have been studied in the Hongyingzi sorghum production base. In this study, we investigated MPs in the surface soil (0–10 cm) and deeper soil (10–20 cm) in the Hongyingzi sorghum production base. Pollution characterization and ecological risk evaluation were conducted. The results revealed that the MP abundance ranged from 1.31 × 102 to 4.27 × 103 particles/kg, with an average of 1.42 ± 1.22 × 103 particles/kg. There was no clear correlation between the MP abundance and soil depth, and the ordinary kriging method predicted a range of 1.26 × 103–1.28 × 103 particles/kg in most of the study area, indicating a relatively uniform distribution. Among the 12 types of MPs detected, acrylates copolymer (ACR), polypropylene (PP), polyurethane (PU), and polymethyl methacrylate (PMMA) were the most frequently detected. These MPs primarily originated from packaging and advertising materials made from polyurethane and polyester used by Sauce Wine enterprises, as well as plastic products made from polyolefin used in daily life and agricultural activities. The particle size of MPs was primarily 20–100 μm. Overall, the proportion of the 20–100 μm MP was 95.1% in the surface soil layer and 86.7% in the deeper soil layer. Based on the pollution load index, the MP pollution level in the study area was classified as class I. Polymer hazard index evaluation revealed that the risk levels at all of the sampling sites ranged from IV to V, and ACR, PU, and PMMA were identified as significant sources of polymer hazard. Potential ecological index evaluation revealed that most of the soil samples collected from the study area were dangerous or extremely dangerous, and the surface soil posed a greater ecological risk than the deeper soil. These findings provide a scientific foundation for the prevention, control, and management of MP pollution in the Hongyingzi sorghum production base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.