Abstract
Domestic wastewater is a significant reservoir of antibiotic resistance genes, which pose environmental and public health risks. We aimed to define an antibiotic resistome signature, represented by core genes, i.e., shared by ≥ 90% of the metagenomes of each of three conceptual environmental compartments – wastewater (influent, sludge, effluent), freshwater, and agricultural soil. The definition of resistome signatures would support the proposal of a framework for monitoring treatment efficacy and assessing the impact of treated wastewater discharge into the environment, such as freshwater and agricultural soil.Metagenomic data from 163 samples originating from wastewater (n = 81), freshwater (n = 58), and agricultural soils (n = 24) across different regions (29 countries, 5 continents), were analysed regarding antibiotic resistance diversity, based on annotation against a database that merged CARD and ResFinder databases. The relative abundance of the total antibiotic resistance genes (corresponding to the ratio between the antibiotic resistance genes and total reads number) was not statistically different between raw and treated wastewater, being significantly higher than in freshwater or agricultural soils. The latter had the significantly lowest relative abundance of antibiotic resistance genes. Genes conferring resistance to aminoglycosides, beta-lactams, and tetracyclines were among the most abundant in wastewater environments, while multidrug resistance was equally distributed across all environments. The wastewater resistome signature included 27 antibiotic resistance genes that were detected in at least 90% of the wastewater resistomes, and that were not frequent in freshwater or agricultural soil resistomes. Among these were genes responsible for resistance to tetracyclines (n = 8), macrolide-lincosamide-streptogramin B (n = 7), aminoglycosides (n = 4), beta-lactams (n = 3), multidrug (n = 2), sulphonamides (n = 2), and polypeptides (n = 1). This comprehensive assessment provides valuable insights into the dynamics of antibiotic resistance in urban wastewater systems and their potential ecological implications in diverse environmental settings. Furthermore, provides guidance for the implementation of One Health monitoring approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.