Abstract

Integrated fixed-film activated sludge (IFAS) reactors are suitable for partial nitritation-anammox (PNA) for autotrophic nitrogen removal; however, its start-up and biofilm formation are slow and difficult. In this study, a new sludge seeding strategy was developed for the start-up of PNA-IFAS by using the pre-cultivated anammox biofilms. Two bioreactors were used in the experimental study, including a reactor that was started conventionally with the pre-acclimated suspended PNA sludge and bare biocarriers (PA-S) and a reactor that used the new seeding method with anammox biofilms pre-acclimated on biocarriers and ammonia-oxidizing bacteria (AOB) sludge in the suspension (PA-B). The use of anammox biofilms as the seed biomass greatly shortened the start-up period of the PNA-IFAS reactor to 1 month or so. Moreover, reactor PA-B achieved a higher nitrogen removal rate (707.3 mg N/(L·d)), better nitrogen removal efficiency (86.8 ± 2.8%), and lower nitrate yield (9.4%) than reactor PA-S. The biofilm development in PA-B was accelerated and its biofilm content was nearly 10 times higher than that of PA-S. The initial segregation of anammox in the biofilm and AOB in the suspended sludge provided an environment that not only accelerated the start-up of PNA-IFAS but also helped suppress the enrichment of unwanted nitrite-oxidizing bacteria (NOB) in the bioreactor, as evidenced by the lower NOB abundance in PA-B (<0.5%) than in PA-S (>2.2%) according to microbial community analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.