Abstract
Recent advances in liquid chromatography-mass spectrometry (LC-MS) technology have led to newer approaches for measuring changes in peptide/protein abundances. Label-free LC-MS methods have been used for extraction of quantitative information and for detection of differentially abundant peptides/proteins. However, difference detection by analysis of data derived from label-free LC-MS methods requires various preprocessing steps including filtering, baseline correction, peak detection, alignment, and normalization, and transformation. Although several specialized tools have been developed to analyze LC-MS data, determining the most appropriate computational pipeline remains challenging partly due to lack of established gold standards. In this paper, we use a spike-in experiment to evaluate the performance of three software tools in accurately detecting changes in peptide abundances from LC-MS data obtained by a label-free LC-MS method. We observe that tools that incorporate peptide isotope cluster and multiple charge information lead to more accurate difference detection with fewer false positives.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have