Abstract

Three dimensional (3D) printing has recently expanded in popularity and has become an effective approach for tissue engineering. Advances in tissue engineering have increased the effectiveness of cell-based therapies. Indeed, the ultimate goal of such treatment is the development of conditions similar to fetal wound regeneration. In this context, technology of 3D printing also allows researchers to more effectively compose multi-material and cell-laden scaffolds with less effort. In this study, we explored a synthetic gel scaffold derived from 3D bioprinter with or without stem cells to accelerate wound healing and skin defects. Adipose-derived stem cells (ADSCs) were isolated and seeded into 3D bioprinter derived-gel scaffold. Morphological and cell adherence properties of 3D scaffold were assessed by hemotoxylin& eosin (H&E) staining and scanning electron microscopy and cell viability was determined by methylthiazolyldiphenyl-tetrazolium bromide assay. In vivo assessment of the scaffold was done using H&E staining in the full-thickness burn rat model. The experimental groups included; (a) untreated (control), (b) 3D bioprinter derived-gel scaffold (Trial 1), and (c) 3D bioprinter derived-gel scaffold loaded with ADSC (Trial 2). Our results represented 3D bioprinter derived-gel scaffold with or without ADSCs accelerated wound contraction and healing compared to control groups. Epithelization was completed until 21days after operation in scaffold alone. In scaffold with ADSCs group, epithelization was faster and formed a multi-layered epidermis with the onset of cornification. In conclusion, 3D bioprinter derived-gel scaffold with or without ADSCs has the potential to be used as a wound graft material in skin regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.