Abstract
Due to the development of wireless network technology, various applications relying on good network quality are widely used on mobile devices. Taking the commonly used video streaming service as an example, a network with high throughput and low packet loss rate can meet the service requirements. When the moving distance of the mobile device is greater than the signal coverage of the AP, it will trigger the handover process to connect to another AP, and cause the network to disconnect and reconnect instantaneously. However, frequently triggering the handover procedure will cause a significant drop in network performance and affect the operation of application services. In order to solve this problem, this paper proposes the OHA and OHAQR. The OHA considers whether the signal quality is good or bad, and uses the corresponding HM method to solve the problem of frequent handover procedures. The OHAQR integrates the QoS requirements of the throughput and packet loss rate into the OHA with the Q-handover score, to provide high-performance handover services with QoS. Our experimental results show that the OHA and OHAQR have 13 and 15 handovers in a high-density scenario, respectively, and are better than the other two methods. The actual throughput and packet loss rate of the OHAQR are 123 Mbps and 5%, respectively, and the network performance is better than that of other methods. The proposed method shows excellent performance in ensuring the network QoS requirements and reducing the number of handover procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.