Abstract
Currently, various deep learning methods can assist in medical diagnosis. Coronary Digital Subtraction Angiography (DSA) is a medical imaging technology used in cardiac interventional procedures. By employing X-ray sensors to visualize the coronary arteries, it generates two-dimensional images from any angle. However, due to the complexity of the coronary structures, the 2D images may sometimes lack sufficient information, necessitating the construction of a 3D model. Camera-level 3D modeling can be realized based on deep learning. Nevertheless, the beating of the heart results in varying degrees of arterial vasoconstriction and vasodilation, leading to substantial discrepancies between DSA sequences, which introduce errors in 3D modeling of the coronary arteries, resulting in the inability of the 3D model to reflect the coronary arteries. We propose a coronary DSA video sequence keyframe recognition method, CDKD-w+, based on w+ space encoding. The method utilizes a pSp encoder to encode the coronary DSA images, converting them into latent codes in the w+ space. Differential analysis of inter-frame latent codes is employed for heartbeat keyframe localization, aiding in coronary 3D modeling. Experimental results on a self-constructed coronary DSA heartbeat keyframe recognition dataset demonstrate an accuracy of 97%, outperforming traditional metrics such as L1, SSIM, and PSNR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have