Abstract

Porphyrin-based polymers of intrinsic microporosity (PIMs) in photocatalytic degradation of a mustard-gas simulant (2-chloroethyl ethyl sulfide (2-CEES)) was demonstrated. Under blue-ultraviolet (UV) light-emitting diode (LED) irradiation, porphyrin-based PIMs PP-H2 and PP-Zn(II) worked as effective heterogeneous photocatalysts for oxidation of 2-CEES. Solvent played an important role in the conversion and selectivity of 2-CEES oxidation. When AcCN was used as a solvent, PP-H2 and PP-Zn(II) demonstrated complete conversion of 2-CEES in 30 and 50 min, respectively, whereas they showed complete conversion at 60 and 70 min, respectively, when MeOH was used as a solvent. Moreover, these PIMs produced 2-chloroethyl ethyl sulfoxide (2-CEESO) as a major product with small amounts of 2-chloroethyl ethyl sulfone (2-CEESO[Formula: see text], ethyl methoxyethyl sulfoxide (EMSO), and vinyl sulfoxide (EVS) as side products in most solvents. However, when MeOH was used as a solvent, highly toxic 2-CEESO2 was not observed as a side product. Furthermore, these PIMs showed no significant changes in photocatalytic activity even after five cycles of reuse, indicating their high stability. Thus, the series of PIMs prepared herein can perform well as heterogeneous catalysts in photooxidation of 2-CEES under blue-UV LED light, with PP-H2 being the most effective oxidation catalyst, leading to fast conversion and high selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.