Abstract
PurposeClinical prediction tools (CPTs) are decision-making instruments utilizing patient data to predict specific clinical outcomes, risk-stratify patients, or suggest personalized diagnostic or therapeutic options. Recent advancements in artificial intelligence have resulted in a proliferation of CPTs created using machine learning (ML)–yet the clinical applicability of ML-based CPTs and their validation in clinical settings remain unclear. This systematic review aims to compare the validity and clinical efficacy of ML-based to traditional CPTs in pediatric surgery. MethodsNine databases were searched from 2000 until July 9, 2021 to retrieve articles reporting on CPTs and ML for pediatric surgical conditions. PRISMA standards were followed, and screening was performed by two independent reviewers in Rayyan, with a third reviewer resolving conflicts. Risk of bias was assessed using the PROBAST. ResultsOut of 8300 studies, 48 met the inclusion criteria. The most represented surgical specialties were pediatric general (14), neurosurgery (13) and cardiac surgery (12). Prognostic (26) CPTs were the most represented type of surgical pediatric CPTs followed by diagnostic (10), interventional (9), and risk stratifying (2). One study included a CPT for diagnostic, interventional and prognostic purposes. 81% of studies compared their CPT to ML-based CPTs, statistical CPTs, or the unaided clinician, but lacked external validation and/or evidence of clinical implementation. ConclusionsWhile most studies claim significant potential improvements by incorporating ML-based CPTs in pediatric surgical decision-making, both external validation and clinical application remains limited. Further studies must focus on validating existing instruments or developing validated tools, and incorporating them in the clinical workflow. Type of StudySystematic Review Level of EvidenceLevel III
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have