Abstract

Vegetation phenology such as the onset of green-up and senescence is strongly controlled by climate and other environmental factors, and in turn affects the terrestrial carbon balance. Therefore, phenological observation is important as an indicator of global warming and for estimation of the terrestrial carbon balance. Because phenological responses differ from species to species, precise monitoring from the species scale to the global scale is required. In this study, we analyzed images from digital cameras, which have proliferated in recent years, to investigate their utility as remote sensors. We collected daily images taken by digital cameras in national parks across Japan over 8 years in wetland mixed deciduous forest, and evergreen broadleaved forest. Values of red, green, and blue (RGB) channels in each pixel within images were extracted, and a vegetation green excess index (2G-RBi) was calculated to detect phenology. The time series of 2G-RBi showed clear phenological patterns of each vegetation type in each year at the species or community scale. Even physiological damage due to a typhoon was detected. The dates of green-up were estimated easily and objectively from the second derivative of 2G-RBi, and a trend in yearly green-up dates of various types of vegetation was demonstrated. Furthermore, a strong correlation between interannual variations in green-up dates and local spring temperature was found, and the sensitivity of green-up date to temperature was revealed. The results suggest the utility of digital cameras for phenological observations at precise temporal and spatial resolutions, despite a year-to-year drift of color balance of camera as a technical device. As a form of near-surface remote sensing, digital cameras could obtain significant ecological information. Establishing camera networks could help us understand phenological responses at a wide range of scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.