Abstract

Abstract. The multidisciplinary and versatile characteristics of biosensors make them very attractive topics to introduce science and engineering concepts into a secondary education classroom. Some of the techniques used in biosensors are easy to demonstrate and can be intriguing to students. We evaluated which application areas and techniques were most intriguing to students through a survey and then developed a 60 to 90 min introductory lesson plan with hands-on experience. The survey was conducted to determine students’ greatest interests and motivations among four biosensor applications (medical diagnostics, food safety, biosecurity, and environmental monitoring) as well as seven techniques used in biosensors: genetic engineering, nanotechnology, circuit building, microfabrication, 3D printing, smartphone utilization, and computer programming. For the application, the middle school students showed the most interest in food safety, followed by environmental monitoring and medical diagnostics. The high school students showed the most interest in medical diagnostics. For the techniques used in biosensors, the middle school students showed the most interest in 3D printing, followed by circuit building and smartphone utilization, while the high school students showed the most interest in genetic engineering and nanotechnology. To capture the most interest early in the students’ education, we designed a 60 to 90 min lesson plan for middle school students using the application areas of food safety and environmental monitoring, as well as the techniques of 3D printing, circuit building, and smartphone utilization. Simplified sampling protocols were introduced for monitoring E. coli from lettuce, Salmonella from chicken packaging, and influenza A from aerosols. As an example of a biosensor, a commercial glucose assay kit was demonstrated using a simple photometric circuit (including an LED and a photodiode) as an optical transducer. As a second example, a commercial pregnancy test strip was demonstrated using a smartphone camera as an optical transducer. Finally, a plastic attachment to a smartphone, made with a 3D printer, was demonstrated to improve the sensitivity and reproducibility of the same pregnancy test. This lesson was carried out in a classroom, and the results exemplify the potential benefit of using biosensor research in a middle school classroom as well as the possibility of inspiring students toward science and engineering fields of study or careers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.