Abstract

Despite the extensive research that has been carried out on automatic fall detection using wearable sensors, falls in the elderly cannot be detected effectively yet. Although recent fall detection algorithms that evaluate the descent, impact and post impact phases of falls, often using vertical velocity, vertical acceleration and trunk angle respectively, tend to be more accurate than the algorithms that do not consider them, they still lack the desired accuracy required to be used among frail older adults. This study aims to improve the accuracy of fall detection algorithms by incorporating average vertical velocity and difference in altitude as additional parameters to the vertical velocity, vertical acceleration and trunk angle parameters. We tested the proposed algorithms on data recorded from a comprehensive set of falling experiments with 12 young participants. Participants wore waist-mounted accelerometer, gyroscope and barometric pressure sensors and simulated the most common types of falls observed in older adults, along with near-falls and activities of daily living (ADLs). Our results showed that, while the base algorithm with the three parameters provided 91.8% specificity, the addition of difference in altitude and average vertical velocity improved the specificity to 98.0% and 99.6%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.