Abstract

Wearable sensors are becoming popular for remote health monitoring as technology improves and cost reduces. One area in which wearable sensors are increasingly being used is falls monitoring. The elderly, in particular are vulnerable to falls and require continuous monitoring. Indeed, many attempts, with insufficient success have been made towards accurate, robust and generic falls and Activities of Daily Living (ADL) classification. A major challenge in developing solutions for fall detection is access to sufficiently large data sets.This paper presents a description of the data set and the experimental protocols designed by the authors for the simulation of falls, near-falls and ADL. Forty-two volunteers were recruited to participate in an experiment that involved a set of scripted protocols. Four types of falls (forward, backward, lateral left and right) and several ADL were simulated. This data set is intended for the evaluation of fall detection algorithms by combining daily activities and transitions from one posture to another with falls. In our prior work, machine learning based fall detection algorithms were developed and evaluated. Results showed that our algorithm was able to discriminate between falls and ADL with an F-measure of 94%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.