Abstract

One possible source of urinary bromophenol (BP) glucuronide and sulfate conjugates in mammalian animal models and humans is polybromodiphenyl ethers (PBDEs), a group of additive flame-retardants found ubiquitously in the environment. In order to study the correlation between levels of PBDEs in human blood plasma and those of the corresponding BP-conjugates in human urine, concentrations of 17 BDE congeners, 22 OH-BDE and 13 MeO-BDE metabolites, and 3 BPs in plasma collected from 100 voluntary donors in Hong Kong were measured by gas chromatograph tandem mass spectrometry (GC–MS). Geometric mean concentration of ΣPBDEs, ΣOH-BDEs, ΣMeO-BDEs and ΣBPs in human plasma were 4.45ngg−1lw, 1.88ngg−1lw, 0.42ngg−1lw and 1.59ngg−1lw respectively. Concentrations of glucuronide and sulfate conjugates of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) in paired samples of urine were determined by liquid chromatography tandem triple quadrupole mass spectrometry (LC–MS/MS). BP-conjugates were found in all of the parallel urine samples, in the range of 0.08–106.49μgg−1-creatinine. Correlations among plasma concentrations of ΣPBDEs/ΣOH-BDEs/ΣMeO-BDEs/ΣBPs and BP-conjugates in urine were evaluated by multivariate regression and Pearson product correlation analyses. These urinary BP-conjugates were positively correlated with ΣPBDEs in blood plasma, but were either not or negatively correlated with other organobromine compounds in blood plasma. Stronger correlations (Pearson’s r as great as 0.881) were observed between concentrations of BDE congeners having the same number and pattern of bromine substitution on their phenyl rings in blood plasma and their corresponding BP-conjugates in urine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call