Abstract

Xian-Ling-Gu-Bao (XLGB), a famous traditional Chinese medicine prescription consisted of six herbal medicines, was used for prevention and treatment of osteoporosis in China. As an oral formulation, the multiple components contained in XLGB were inevitably biotransformed by the intestinal microflora before absorption via the gastrointestinal tract. However, the dynamic profiles of biotransformation products of XLGB remain unknown. In this paper, a rapid and sensitive ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry method was developed for the simultaneous quantitative analysis of multiple biotransformation products of XLGB with rat intestinal microflora. For 10 selected quantitative compounds, all calibration curves revealed good linearity (r2>0.99) within the sampling ranges considered. The whole intra- and inter-day precisions (as relative standard deviation) of all analytes were <13.5%, and the accuracies (as relative error) were in the range from -11.3 to 11.2%. The lower limits of quantification were 20, 10, 5, 20, 2, 2, 2, 5, 2 and 2ng/mL for sweroside, timosaponin BII, epimedin C, asperosaponin VI, psoralen, isobavachin, icariside II, timosaponin AIII, isobavachalcone and icaritin, respectively. The matrix effects, extraction recoveries and stabilities were all satisfactory. Meanwhile, dynamic profiles of 21 additional biotransformation products were also monitored by their area-time curves. The analytical method was successfully applied to describe dynamic profiles of 31 biotransformation products of XLGB and the recipes with removal of a definite composed herbal medicine (Anemarrhenae Rhizoma or Rehmanniae Radix).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.