Abstract

The isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are pivotal intermediates for cholesterol homeostasis and cell signaling in the mevalonate pathway. We developed a sensitive and selective high-performance liquid chromatography tandem triple quadrupole mass spectrometry (LC-QQQ-MS) method for FPP in human plasma without the need for a derivatization process. We optimized the sample preparation procedure to extract FPP and 13C5-FPP (as internal standard) from sample fluids using methanol. Phosphate-buffered saline was used as the surrogate matrix for the preparation of calibration curves and quality control samples. Using an XBridge C18 column (3.5μm, 2.1 × 100-mm ID) with gradient elution composed of 10mmol/L ammonium carbonate/ammonium hydroxide (1000:5, v/v) and acetonitrile/ammonium hydroxide (1000:5, v/v) provided the sharp peaks of FPP and 13C5-FPP in human plasma. The calibration curve ranged from 0.2 to 20ng/mL in human plasma with acceptable intra-day and inter-day precision and accuracy. The sensitivity of this bioanalytical method was sufficient for clinical analysis. The endogenous FPP plasma concentrations in 40 human healthy volunteers ascertained by LC-QQQ-MS and high-performance liquid chromatography tandem hybrid quadrupole Orbitrap high-resolution mass spectrometry (LC-Q-Orbi-MS) were comparable. Furthermore, the endogenous GGPP in human plasma was selectively detected for the first time by LC-Q-Orbi-MS. In conclusion, a sensitive bioanalytical method for FPP in human plasma by means of LC-QQQ-MS and LC-Q-Orbi-MS was developed in this study. Taking into account the versatility of LC-Q-Orbi-MS, the simultaneous detection of FPP and GGPP may be feasible in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call