Abstract

With the rapid development of urbanization, the problem of urban traffic congestion has become increasingly prominent. Dynamic route guidance promises to improve the capacity of urban traffic management and mitigate traffic congestion in big cities. In the design of simulation-based experiments for most dynamic route guidance methods, the simulation data is generally estimated from a specific traffic scenario in the real-world. However, highly dynamic traffic in the city implies that traffic scenarios in real systems are diverse. Therefore, if a route guidance method cannot adjust its strategy according to the spatial and temporal characteristics of different traffic scenarios, then it cannot guarantee optimal results under all traffic scenarios. Thus, ideal dynamic route guidance methods should have a highly adaptive learning ability under diverse traffic scenarios so as to have extensive improvement capabilities for different traffic scenarios. In this study, an A* trajectory rejection method based on multi-agent reinforcement learning (A*R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) is proposed; the method integrates both system and user perspectives to mitigate traffic congestion and reduce travel time (TT) and travel distance (TD). First, owing to its adaptive learning ability, the A*R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> can comprehensively analyze the traffic conditions for different traffic scenarios and intelligently evaluate the road congestion index from a system perspective. Then, the A*R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> determines the routes for all vehicles from user perspective according to the road network congestion index. An extensive set of simulation experiments reveal that, under various traffic scenarios, the A*R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> can rely on its adaptive learning ability to achieve better traffic efficiency. Moreover, even in cases where many drivers are not fully compliant with the route guidance, the traffic efficiency can still be improved significantly by A*R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.