Abstract
In transportation-based cyberphysical systems (TCPS), also known as intelligent transportation systems (ITS), to increase traffic efficiency, a number of dynamic route guidance schemes have been designed to assist drivers in determining optimal routes for their travels. To determine optimal routes, it is critical to effectively predict the traffic condition of roads along the guided routes based on real-time traffic information collected by vehicular networks to mitigate traffic congestion and improve traffic efficiency. In this paper, we propose a Dynamic En-route Decision real-time Route guidance (DEDR) scheme to effectively mitigate road congestion caused by the sudden increase of vehicles and to reduce travel time and fuel consumption. DEDR considers real-time traffic information generation and transmission by vehicular networks. Based on the shared traffic information, DEDR introduces the trust probability to predict traffic conditions and to dynamically, en route, determine alternative optimal routes. DEDR also considers multiple metrics to comprehensively assess traffic conditions so that drivers can determine the optimal route with a preference to these metrics during travel. DEDR considers effects of external factors (bad weather, incidents, etc.) on traffic conditions as well. Through a combination of extensive theoretical analysis and simulation experiments, our data show that DEDR can greatly increase traffic efficiency in terms of time efficiency, balancing efficiency, and fuel efficiency, in comparison with existing schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.