Abstract
Non-oxidative intercalation of graphite avoids damage to graphene lattices and is a suitable method to produce high-quality graphene. However, the yield of exfoliated graphene is low in this process due to the poor delamination efficiency of guest species. In this study, a Brønsted acid intercalation protocol is developed involving polyoxometalate (POM) clusters (H6P2W18O62) as guests and intercalation of graphite is realized at the sub-nanometer scale. Theoretical simulation based on DFT elucidates the stepwise intercalation mechanism of Brønsted acid molecules and clusters. Unlike common molecules/ionic guests, intercalation of POM clusters induces large expansion and extensive donor–acceptor interactions among graphite interlayers. This significantly weakens the van der Waals forces and promotes exfoliation efficiency of graphene layers. The exfoliated graphene possesses outstanding features of large lateral size, thin thickness, and high purity, and shows excellent performance as the anode for high power sodium-ion batteries. This work proffers a new pathway toward non-oxidative intercalation of graphite for large-scale production of graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.