Abstract
Confronted with the difficult in tuning the microstructures (components, crystalline state and particle size) of metal phosphide anodes for sodium ion batteries (SIBs), it is of great challenge and fundamentally important to develop a rational strategy to design hierarchically porous structure metal phosphide anodes for high-performance SIBs. Herein, for the first time, a unique core-shell porous FeP@CoP phosphide micocubes interconnected via reduced graphene oxide (RGO) nanosheets (RGO@CoP@FeP) are for the first time synthesized via a low-temperature phosphorization process using prussion blue as reactant template. The RGO@CoP@FeP hierarchical architecture SIBs anodes exhibit greatly improved reversible capacity, cycling stability and excellent rate capability. The enhanced electrochemical performance of RGO@CoP@FeP is ascribed to the uniquely porous core-shell microstructure and synergistic effect between the phosphide components. The core-shell structure with FeP as core and CoP as shell can provide enough cushion spaces for volume changes, as well as shorten the Na+ diffusion path. The interconnected RGO nanosheets and carbon layer wrapped on the FeP core cubes together build a conductive highway, enhancing charge transfer kinetics. The present strategy using MOFs as reactant templates for porous core-shell phosphide electrodes can be extended to other novel electrodes for high performance energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.