Abstract

With the increasing demand for power batteries and energy storage devices, developing solid-state lithium metal batteries (LMBs) with high energy density and outstanding safety is urgent. Gel polymer electrolyte (GPE), a quasi-solid polymer electrolyte (SPE), is a currently promising electrolyte candidate for solid-state LMBs due to its outstanding performance. Herein, a solid-state LMB constructed with a GPE containing tetraethylene glycol dimethyl ether (G4) and succinonitrile (SN) is prepared, whose electrochemical performance is enhanced by synergistic enhancement effect of G4 and SN, and mechanical strength is reinforced by a PET nonwoven supporting layer. G2S2-GPE (a GPE contains the equal weight of G4 and SN) has a high room-temperature ionic conductivity of 0.90 mS cm−1 and Young's modulus of about 200 MPa, as well as enhanced thermal stability (decomposition temperature of 224 °C). Furthermore, the Li||LiFePO4 full battery can maintain 136.4 mAh g−1 high capacity with a 94.7 % capacity retention rate and 99.9 % average coulombic efficiency after 800 cycles at 0.5 C. Moreover, high voltage Li||LiNi0.6Co0.2Mn0.2O2 cell and Li||LiFePO4 pouch cell employing G2S2-GPE demonstrate satisfactory cycling and safety characteristics, indicating their potential for superior practicability. We believe popularizing this synergistic enhancement strategy in the electrolyte field is beneficial for developing high-performance LMBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.