Abstract

AbstractWe perform a comprehensive investigation of the statistical distribution of outer belt electron acceleration events over energies from 300 keV to ∼10 MeV regardless of storm activity using 6‐years of observations from Van Allen Probes. We find that the statistical properties of acceleration events are consistent with the characteristic energies of combined local acceleration by chorus waves and inward radial diffusion. While electron acceleration events frequently occur both at <2 MeV at L < 4.0 and at multi‐MeV at L > 4.5, significant acceleration events are confined to L > ∼4.0. By performing superposed epoch analysis of acceleration events during storm and non/weak storm events and comparing their geomagnetic conditions, we reveal the strong correlation (>0.8) between accumulated impacts of substorms as measured by time‐integrated AL (Int(AL)) and the upper flux limit of electron acceleration. While intense storms can provide favorable conditions for efficient acceleration, they are not necessarily required to produce large maximum fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.