Abstract

Experimental studies, deterministic approaches and probabilistic risk assessments (PRAs) on local fault (LF) propagation in sodium-cooled fast reactors (SFRs) have been performed in many countries because LFs have been historically considered as one of the possible causes of severe accidents. Adventitious-fuel-pin-failures (AFPFs) have been considered to be the most dominant initiators of LFs in these PRAs because of their high frequency of occurrence during reactor operation and possibility of fuel-element-failure-propagation (FEFP). A PRA on FEFP from AFPF (FEFPA) in the Japanese prototype SFR (Monju) was performed in this study based on the state-of-the-art knowledge, reflecting the most recent operation procedures under off-normal conditions. Frequency of occurrence of AFPF in SFRs which was the initiating event of the event tree in this PRA was updated using a variety of methods based on the above-mentioned latest review on experiences of this phenomenon. As a result, the frequency of occurrence of, and the core damage frequency (CDF) from, AFPF in Monju was significantly reduced to a negligible magnitude compared with those in the existing PRAs. It was, therefore concluded that the CDF of FEFPA in Monju could be comprised in that of anticipated transient without scram or protected loss of heat sink events from both the viewpoint of occurrence probability and consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call