Abstract

Probabilistic and deterministic safety assessments and experimental studies on local fault (LF) propagation in sodium-cooled fast reactors (SFRs) have been performed in many countries because LFs have been historically considered as one of the possible causes of severe accidents. Adventitious fuel pin failures have been considered to be the most dominant initiators of LFs in these probabilistic assessments because of its high frequency of occurrence during reactor operation and possibility of subsequent pin-to-pin failure propagation. Four possible mechanisms of fuel element failure propagation from adventitious fuel pin failure (FEFPA) were identified from a state-of-the-art review of open papers. All the mechanisms for FEFPA analysis including thermal, mechanical and chemical propagation are modeled into a safety assessment code which is applicable to arbitrary SFRs by developing some needed but missing methods. Furthermore, an assessment on FEFPA of Japanese prototype fast breeder reactor (Monju) was performed using this methodology. It was clarified that FEFPA was highly unlikely and limited at most within one subassembly in Monju owing to its redundant and diverse detection and shutdown systems for FEFPA even assuming the propagation. These results also suggested future possibility of run-beyond-cladding-breach operation which would enhance the economic efficiency in Monju.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call