Abstract
AbstractMulti‐walled carbon nanotubes (MWCNTs) were successfully synthesized and functionalized by chemical vapour deposition and acid reflux methods, respectively. Chitosan (CTS) was prepared by a chemical extraction method from waste prawn shells. Various weight fractions of functionalized multi‐walled carbon nanotubes (f‐MWCNTs) have been used as reinforcing agent in CTS biopolymer matrix. Fourier transform infrared spectroscopy analysis was done, which confirms the presence of absorption bands of the various functional groups of chitin, CTS, and MWCNTs. Raman spectra revealed the quality of MWCNTs, the extent of their functionalization, and the quality of nanocomposites. The X‐ray diffraction analysis showed the distinctive peaks for f‐MWCNTs’ and also revealed the formation of CTS/f‐MWCNTs nanocomposites. Transmission Electron Microscopy (TEM) analysis also exhibited that the CTS/f‐MWCNTs nanoparticles have a well‐defined crystalline structure. The highest coercivity and magnetization (Ms) of the CTS/5%f‐MWCNTs nanocomposite are 602 Oe and 0.1202 emu/g, respectively that have been enhanced by 3.83 and 5.27 times compared to the pure CTS respectively. It showed that the conductivity is getting higher with the addition of f‐MWCNTs in the CTS matrix. CTS/5% f‐MWCNTs composites exhibit the highest conductivity than other composites and the conductivity of CTS/5% f‐MWCNTs composite is 4.0×10−4 S/m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.