Abstract

AbstractNickel cobalt layered double hydroxides (NiCo LDHs) have emerged as ideal electrode materials for supercapattery due to their high specific surface area and excellent cycling stability. Morphology control plays a unique role in regulating the performance of the NiCo LDHs. Herein, the morphology of NiCo‐LDHs electrode is optimized for enhancing energy storage by a simple activation process with different concentrations of the electrolyte. During the activation process, electrochemical morphology reconstruction occurs on the electrode surface. With a 2 m KOH electrolyte, the NiCo‐LDH electrode transforms from nanosheets to nanoflower, which aids in reducing the distance of ion transport. The reconstructed NiCo‐LDH exhibits an ultra‐high specific capacity of 2809 C g−1 at a current density of 1 A g−1, outperforming most of NiCo LDHs. At a high current density of 10 A g−1, the capacity retention rate remains above 72.7% after 3000 cycles. An asymmetric supercapacitor is fabricated with activated carbon material as the negative electrode, the energy density is 36 Wh kg−1 at the power density of 732 W kg−1. The strategy proposed in the study, which involves concentration‐controlled morphology optimization for energy storage enhancement, holds great practical significance for the field of supercapatteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.