Abstract

BackgroundAtopic Dermatitis (AD) is a chronic inflammatory skin disorder with evidence of lichenification in later stages. There is mounting evidence supporting the role of TGF- β1 in mediating inflammation as well as subsequent tissue remodeling, often resulting in fibrosis. Given the role of genetic variants in the differential expression of TGF-β1 in various diseases, this study seeks to ascertain the role of TGF-β1 promoter variants (rs1800469 and rs1800468) in AD susceptibility, as well as their association with TGF- β1 mRNA expression, TGF- β1 serum levels and skin prick test positivity in Atopic Dermatitis patients. MethodsAn aggregate of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for TGF-β1 promoter polymorphisms by PCR-RFLP. TGF- β1 mRNA was quantified by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and serum TGF- β1, and total IgE levels were determined by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites and food allergens. ResultsA higher frequency of TT genotypes of rs1800469 (OR = 7.7, p = 0.0001) and GA+AA genotypes of rs1800468 (OR-4.4, p < 0.0001) were observed in AD cases than those in controls. Haplotype analysis demonstrated that TG haplotype carriers had an increased risk of AD (p = 0.013). Quantitative analysis revealed a significant upregulation of both mRNA (p = 0.0002) and serum levels (p < 0.0001) of TGF- β1 with a substantial positive correlation between them (Correlation coefficient=0.504; p = 0.01). Moreover, serum TGF-β1 levels were associated with quality of life (p = 0.03), the severity of the disease (p = 0.03), and House dust mite allergy (p = 0.01) whereas TGF-β1 mRNA levels positively correlated with disease severity(p = 0.02). Stratification analysis revealed that the TT genotype of rs1800469 was associated with higher IgE levels (p = 0.01) and eosinophil percentage(p = 0.007) whereas the AA genotype of rs1800468 correlated with elevated serum IgE levels (p = 0.01). Besides, no significant association of genotypes with mRNA and serum expression of TGF-β1 was observed. ConclusionOur study indicates that TGF-β1 promoter SNPs bear a significant risk of AD development. Moreover, upregulation of TGF-β1 mRNA and serum levels and their association with disease severity, quality of life, and HDM allergy suggests its role as a diagnostic/prognostic biomarker that could help in the development of new therapeutic and prevention strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call