Abstract

This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.