Abstract

Solid polymer electrolyte (SPE) has been considered as promising candidate electrolyte for solid-state lithium metal battery. However, the low ion conductivity and poor interface stability seriously hinder the development of SPE. Introducing the functional filler is a commonly used and effective approach to solving these issues. The poor compatibility and ambiguous mechanism of action are currently the main challenges. In this study, we design and synthesize carbon dots (NSFCDs) with quaternary functional groups, which are introduced into the SPE in the polymerization process of hybrid polymer electrolyte (HPE). The detailed effect law of polyfunctional groups on the polymer chain structure, interface structure of electrolyte/electrode and ion migration is systematically revealed. The dense polymer network endows HPE with enhanced mechanical properties. Through the regulation of polymer segments, the coordination environment of lithium ions is altered, promoting ion transport. The solid electrolyte interface (SEI) induced by NSFCDs and lithium salt anions effectively improves the morphology of lithium ion deposition and alleviates volume strain. As a result, the HPE based on polyethylene oxide (PEO) constructed by free radical polymerization of NSFCDs and polyethylene glycol diacrylate (PEGDA) exhibits excellent comprehensive performance, the assembled Li symmetric battery can cycle stably for 4000 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call