Abstract
The use of self-assembling peptide hydrogels in the treatment of spinal cord and brain injuries, especially when combined with adult neural stem cells, has shown great potential. To advance tissue engineering, it is essential to understand the effect of mechanochemical signaling on cellular differentiation. The elucidation of the molecular interactions at the level of the neuronal membrane still represents a promising area of investigation for many drug delivery and tissue engineering applications. An innovative molecular dynamics framework has been introduced to investigate the effect of SAP fibrils with different charges on neural membrane lipid domain dynamics. Such advance enables the in silico exploration of the biomimetic properties of SAP hydrogels and other polymeric biomaterials for tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.