Abstract

The recent COVID-19 pandemic and the prospect of future global pandemics highlight the long-standing need to passively eliminate viruses and bacteria on surfaces. Conventional antimicrobial surfaces and coatings are typically constrained by a trade-off between antimicrobial efficacy and physical durability. A biphasic polyurethane coating has been developed that breaks this trade-off by incorporating a durability-imparting polycarbonate (PC) discrete phase with a continuous poly(ethylene glycol) (PEG) transport phase that absorbs, stores, and releases antimicrobial active compounds for extended microbial inactivation. The biphasic polymer was shown to absorb carboxylic acid and quaternary ammonium antimicrobial active compounds, maintained their levels after five years of simulated cleaning, and inactivated up to 99.99% of Human Coronavirus 229E and Influenza A H1N1. Furthermore, the levels of antimicrobial active compounds on the biphasic coating could be augmented by cleaning the substrate with a disinfectant. The practicality of biphasic coatings for automotive and commercial aerospace environments was demonstrated by showing control of hardness and stain resistance through biphasic composition, showing environmental durability through heat, humidity, and light exposure, and passing flammability protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.