Abstract
The purpose of this study is to investigate the unsteady magnetohydrodynamic three-dimensional flow induced by a stretching surface. An incompressible electrically conducting Eyring-Powell fluid fills the convectively heated stretching surface in the presence of nanoparticles. The effects of thermal radiation, viscous dissipation and Joule heating are accounted in heat transfer equation. The model used for the nanofluid includes the effects of Brownian motion and thermophoresis. The highly nonlinear partial differential equations are reduced to ordinary differential equations with the help of similarity method. The reduced complicated two-point boundary value problem is treated numerically using Runge–Kutta–Fehlberg 45 method with shooting technique. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. At the end, the effects of influential parameters on velocity, temperature and nanoparticles concentration fields are also discussed comprehensively. Further, the physical quantities of engineering interest such as the Nusselt number and Sherwood number are also calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Association of Arab Universities for Basic and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.