Abstract

Systems of coupled chaotic maps and flows arise in many situations of physical and biological interest. The aim of this paper is to analyze and to present numerical evidence for a common type of nonhyperbolic behavior in these systems: unstable dimension variability. We show that unstable periodic orbits embedded in the dynamical invariant set of such a system can typically have different numbers of unstable directions. The consequence of this may be severe: the system cannot be modeled deterministically in the sense that no trajectory of the model can be realized by the natural chaotic system that the model is supposed to describe and quantify. We argue that unstable dimension variability can arise for small values of the coupling parameter. Severe modeling difficulties, nonetheless, occur only for reasonable coupling when the unstable dimension variability is appreciable. We speculate about the possible physical consequences in this case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.