Abstract

The success of deterministic modeling of a physical system relies on whether the solution of the model would approximate the dynamics of the actual system. When the system is chaotic, situations can arise where periodic orbits embedded in the chaotic set have distinct number of unstable directions, a dynamical property known as unstable dimension variability. As a consequence, no model of the system produces reasonably long trajectories that are realized by nature. We argue and present physical examples indicating that, in such a case, though the model is deterministic and low-dimensional, statistical quantities can still be reliably computed. We also argue that unstable dimension variability may be common in high-dimensional chaotic systems such as those arising from discretization of nonlinear partial differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.