Abstract
This paper presents a multivariable nonlinear model predictive control (NMPC) scheme for the regulation of a low-density polyethylene (LDPE) autoclave reactor. A detailed mechanistic process model developed previously was used to describe the dynamics of the LDPE reactor and the properties of the polymer product. Closed-loop simulations are used to demonstrate the disturbance rejection and tracking performance of the NMPC algorithm for control of reactor temperature and weight-averaged molecular weight (WAMW). In addition, the effect of parametric uncertainty in the kinetic rate constants of the LDPE reactor model on closed-loop performance is discussed. The unscented Kalman filtering (UKF) algorithm is employed to estimate plant states and disturbances. All control simulations were performed under conditions of noisy process measurements and structural plant–model mismatch. Where appropriate, the performance of the NMPC algorithm is contrasted with that of linear model predictive control (LMPC). It is shown that for this application the closed-loop performance of the UKF based NMPC scheme is very good and is superior to that of the linear predictive controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.