Abstract
Background: NTRK1, NTRK2, and NTRK3 are members of the neurotrophic receptor tyrosine kinases (NTRK) family, which encode TrkA, TrkB, and TrkC receptors, respectively. Hematologic cancers are also linked to point mutations in the NTRK gene's kinase domain. Trk fusions are the most common genetic change associated with oncogenic activity in Trk-driven liquid tumors. Thus, point mutations in NTRK genes may also play a role in tumorigenesis. The structural and functional effect of mutations in Trk-B & Trk-C proteins remains unclear. Methods: In this research, Homology (threading-based approach) modeling and the all-atom molecular dynamics simulations approaches are applied to examine the structural and functional behavior of native and mutant Trk-B and Trk-C proteins at the molecular level. Results: The result of this study reveals how the mutations in Trk-B (A203T & R458G) and Trk-C (E176D & L449F) proteins lost their stability and native conformations. The Trk-B mutant A203T became more flexible than the native protein, whereas the R458G mutation became more rigid than the native conformation of the Trk-B protein. Also, the Trk-C mutations (E176D & L449F) become more rigid compared to the native structure. Conclusions: This structural transition may interrupt the function of Trk-B and Trk-C proteins. Observing the impact of NTRK-2/3 gene alterations at the atomic level could aid in discovering a viable treatment for Trk-related leukemias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.