Abstract
We analyze dynamical large deviations of quantum trajectories in Markovian open quantum systems in their full generality. We derive a quantum level-2.5 large deviation principle for these systems, which describes the joint fluctuations of time-averaged quantum jump rates and of the time-averaged quantum state for long times. Like its level-2.5 counterpart for classical continuous-time Markov chains (which it contains as a special case), this description is both explicit and complete, as the statistics of arbitrary time-extensive dynamical observables can be obtained by contraction from the explicit level-2.5 rate functional we derive. Our approach uses an unraveled representation of the quantum dynamics which allows these statistics to be obtained by analyzing a classical stochastic process in the space of pure states. For quantum reset processes we show that the unraveled dynamics is semi-Markovian and derive bounds on the asymptotic variance of the number of quantum jumps which generalize classical thermodynamic uncertainty relations. We finish by discussing how our level-2.5 approach can be used to study large deviations of nonlinear functions of the state, such as measures of entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.