Abstract

Under the scenario of high-frequency data, a consistent estimator of the realized Laplace transform of volatility is proposed by Todorov and Tauchen (Econometrica 80:1105–1127, 2012) and a related central limit theorem has been well established. In this paper, we investigate the asymptotic tail behaviour of the empirical realized Laplace transform of volatility (ERLTV). We establish both a large deviation principle and a moderate deviation principle for the ERLTV. The good rate function for the large deviation principle is well defined in the whole real space, which indicates a limit for the normalized logarithmic tail probability of the ERLTV. Moreover, we also derive the function-level large and moderate deviation principles for ERLTV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.