Abstract

Ruthenium (Ru)-catalyzed aprotic Li–O2 batteries have attracted a great deal of interests because of their excellent electrochemical performances including high specific energy and round-trip efficiency. However, it remains unclear how the incorporated Ru catalysts function to enhance the batteries’ performance. Herein, we report Ru nanocrystal-catalyzed carbon nanotube-based aprotic Li–O2 batteries with electrochemical performances that can match or even surpass some of the best literature results. The catalytic mechanism of Ru nanocrystals has been studied by a combination of Coulometry and in situ differential electrochemical mass spectrometry (DEMS). It has been found that through the synergy of water additive in electrolyte and Ru-based catalysts, the charging reaction overpotential can be brought down to 0.12V (usually η>1V). Moreover, an isotope-labeled DEMS study on the electrochemical oxidation of Li213CO3 indicated that Ru nanocrystals also have the capability to decompose Li2CO3, a detrimental by-product formed in almost all aprotic Li–O2 batteries, at a surprisingly low potential of ~3.5V vs. Li/Li+ (usually >4.0V). The capabilities of Ru nanocrystals to decompose Li2O2, LiOH, and Li2CO3 at low voltages, which drastically decreases the degradation of electrode and/or electrolyte, are crucial to achieve outstanding electrochemical performances for Li–O2 batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.