Abstract
Formyl radical (HCO•) and hydroxycarbonyl radical (HOCO•) are versatile building blocks in the formation of biorelevant complex organic molecules (COMs) in interstellar medium. Understanding the chemical pathways for the formation of HCO• and HOCO• starting with primordial substances (e.g., CO and CO2) is of vital importance in building the complex network of prebiotic chemistry. Here, we report the efficient formation of HCO• and HOCO• in the photochemistry of hydroxidooxidosulfur radical (HOSO•)–a key intermediate in SO2 photochemistry–in interstellar analogous ices of CO and CO2 at 16 K through hydrogen atom transfer (HAT) reactions. Specifically, 266 nm laser photolysis of HOSO• embedded in solid CO ice yields the elusive hydrogen‑bonded complexes HCO•···SO2 and HOCO•···SO, and the latter undergoes subsequent HAT to furnish CO2···HOS• under the irradiation conditions. Similar photo-induced HAT of HOSO• in solid CO2 ice leads to the formation of HOCO•···SO2. The HAT reactions of HOSO• in astronomical CO and CO2 ices by forming reactive acyl radicals may contribute to understanding the interplay between the sulfur and carbon ice-grain chemistry in cold molecular clouds and also in the planetary atmospheric chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.