Abstract

Rate constants for hydrogen atom transfer (HAT) reactions of substituted toluenes with tert-butyl, tert-butoxy, and tert-butylperoxyl radicals are reanalyzed here using the free energies of related proton transfer (PT) and electron transfer (ET) reactions, calculated from an extensive set of compiled or estimated pKa and E° values. The Eyring activation energies ΔGHAT‡ do not correlate with the relatively constant ΔG°HAT, but do correlate close-to-linearly with ΔG°PT and ΔG°ET. The slopes of correlations are similar for the three radicals except that the tBu• barriers shift in the opposite direction from the oxyl radical barriers─a clear example of the qualitative "polar effect" in HAT reactions. When cast quantitatively in free energy terms (ΔGHAT‡ vs ΔG°PT/ET), this effect is very small, only 5-10% of the typical Bell-Evans-Polanyi (BEP) effect of changing ΔG°HAT. This analysis also highlights connections between polar effects and the concepts of "asynchronous" or "imbalanced" HAT reactions in which the PT and ET components of ΔG°HAT contribute differently to the barrier. Finally, these observations are discussed in light of the traditional explanations of polar effects and the potential for a rubric that could predict the extent to which contra-thermodynamic selectivity may be achieved in HAT reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.