Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) regulate numerous biological processes through interaction with signaling effectors at the cell surface. As a unique feature, GPI-APs can be released from their anchors by multi-pass GPI-specific phospholipases (types A2, C, and D) to impact signaling networks, phenotype, and cell fate; however, many questions remain outstanding. Here, we discuss and expand our current understanding of the distinct GPI-specific phospholipases, their substrates, effector pathways, and emerging physiological roles, with a focus on the six-transmembrane ecto-phospholipases GDE2 (GDPD5) and GDE3 (GDPD2). We provide structural insight into their AlphaFold-predicted inner workings, revealing how transmembrane (TM) domain plasticity may enable GPI-anchor binding and hydrolysis. Understanding lipolytic cleavage of GPI-APs adds a new dimension to their signaling capabilities and biological functions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have