Abstract

We have experimentally studied the spin-induced time reversal symmetry (TRS) breaking as a function of the relative strength of the Zeeman energy (E(Z)) and the Rashba spin-orbit interaction energy (E(SOI)), in InGaAs-based 2D electron gases. We find that the TRS breaking, and hence the associated dephasing time tau(phi)(B), saturates when E(Z) becomes comparable to E(SOI). Moreover, we show that the spin-induced TRS breaking mechanism is a universal function of the ratio E(Z)/E(SOI), within the experimental accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.