Abstract
According to the WHO, approximately one in six individuals worldwide will develop some form of cancer in their lifetime. Therefore, accurate and early detection of lesions is crucial for improving the probability of successful treatment, reducing the need for more invasive treatments, and leading to higher rates of survival. In this work, we propose a novel R-CNN approach with pretraining and data augmentation for universal lesion detection. In particular, we incorporate an asymmetric 3D context fusion (A3D) for feature extraction from 2D CT images with Hybrid Task Cascade. By doing so, we supply the network with further spatial context, refining the mask prediction over several stages and making it easier to distinguish hard foregrounds from cluttered backgrounds. Moreover, we introduce a new video pretraining method for medical imaging by using consecutive frames from the YouTube VOS video segmentation dataset which improves our model's sensitivity by 0.8 percentage points at a false positive rate of one false positive per image. Finally, we apply data augmentation techniques and analyse their impact on the overall performance of our models at various false positive rates. Using our introduced approach, it is possible to increase the A3D baseline's sensitivity by 1.04 percentage points in mFROC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.