Abstract

Abstract A new finite element method is presented for the analysis of uncertain heat transfer problems using universal gray number theory. The universal gray number representation involves normalization of the uncertain parameters based on their lower and upper bound values with its own distinctive rules of arithmetic operations which makes this method distinctive from conventional interval analysis approaches. This work introduces the concept of fuzzy finite element-based heat transfer analysis using universal gray number theory, that compared to the interval-based fuzzy analysis, would yield significantly improved and more accurate results. Heat transfer problems, including a one-dimensional tapered fin, a two-dimensional hollow rectangle representing a thin slice of a chimney of a thermal power plant, and a three-dimensional (axisymmetric) solid body with different boundary conditions, were considered for the uncertainty analysis. It is shown that, in each case, the interval values of the response parameters given by the universal gray number theory are consistent with the ranges of the input parameters, compared to those given by the interval analysis. It is also revealed that universal gray number theory is more inclusive and less computationally intensive compared to the interval analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.