Abstract

Abstract We consider biotransport in tumors with uncertain heterogeneous material properties. Specifically, we focus on the elliptic partial differential equation (PDE) modeling the pressure field inside the tumor. The permeability field is modeled as a log-Gaussian random field with a prespecified covariance function. We numerically explore dimension reduction of the input parameter and model output. Specifically, truncated Karhunen–Loève (KL) expansions are used to decompose the log-permeability field, as well as the resulting random pressure field. We find that although very high-dimensional representations are needed to accurately represent the permeability field, especially in presence of small correlation lengths, the pressure field is not sensitive to high-order KL terms of the input parameter. Moreover, we find that the pressure field itself can be represented accurately using a KL expansion with a small number of terms. These observations are used to guide a reduced-order modeling approach to accelerate computational studies of biotransport in tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.