Abstract
Machine learning is considered to be one of the most promising applications of quantum computing. Therefore, the search for quantum advantage of the quantum analogues of machine learning models is a key research goal. Here, we show that variational quantum classifiers and support vector machines with quantum kernels can solve a classification problem based on the k-FORRELATION problem, which is known to be PROMISEBQP-complete. Because the PROMISEBQP complexity class includes all Bounded-Error Quantum Polynomial-Time (BQP) decision problems, our results imply that there exists a feature map and a quantum kernel that make variational quantum classifiers and quantum kernel support vector machines efficient solvers for any BQP problem. Hence, this work implies that their feature map and quantum kernel, respectively, can be designed to have a quantum advantage for any classification problem that cannot be classically solved in polynomial time but contrariwise by a quantum computer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.